## MATERIALS MANAGEMENT FOR SNOW AND ICE CONTROL

#### CENTRAL NEW YORK PLANNING AND DEVELOPMENT BOARD

SUPPORTED BY CORNELL LOCAL ROADS PROGRAM

#### Presenter's Background

- Laborer and Equipment Operator
- NYSDOT 36 Years
  - Research
  - **Claims and Litigation**
  - Maintenance and Operations
- Consultant Since 1996

Training, Claims and Litigation Support, Guidance Documents, Books, Research, Plan and Policy, etc. WE HAVE A TREAT FOR YOU TODAY-WE'VE BROUGHT IN A

> MOTIVATIONAL EXPERT!

> > CHRID

#### AGENDA

- S&I Plan and Policy Documents
- Materials Management Plans
- S&I Materials (Including Organic Chemicals)
- Sand Versus Salt as a Treatment
- Prewetting Salt

#### AGENDA ctd.

- Material Application Techniques
- Calibration and Ground Speed Control
- Salt and the Environment
- S&I Strategies and Tactics
- S&I Treatment Design

#### Questions & Answers



When deciding on Level of Service goals, what is the most important:

- A. Cost
- B. Safety
- C. Environmental Responsibility
- D. All of the above

Sand piles with only 5% salt pose no environmental threat:

A.True B.False Solid ice control chemicals can be used to treat roads before a storm on high-speed, highvolume roads:

A.True

**B**.False

#### On a per treatment basis, sand:

A.Cost more than saltB.Cost less than saltC.Cost about the same as salt

For the same level of service, anti-icing cost less than de-icing: A.True B.False

## A Comprehensive Snow Plan and Policy





#### Advantages of Written Policy

- Forced to Plan Ahead
- Liability Minimized
- All Agency on Same Page
- Public Understanding/Complaint Reduction

#### Written Policy

• WHAT DO YOU THINK SHOULD BE IN A WRITTEN MUNICIPAL SNOW AND ICE CONTROL PLAN AND POLICY

#### MINIMUM CONTENT

- LEVEL OF SERVICE
- TREATMENT TIMING AND SEQUENCE
- STUCK AND PRIVATE VEHICLES
- SIDEWALK AND ALLEY
- PARKING DURING STORM/CLEAN UP
- SNOW REMOVAL (HAULING)
- MATERIALS STORAGE & USE

## MINIMUM CONTENT CTD.

#### (Appendix I)

- COMPLAINT AND FOLLOW-UP
- SEVERE CONDITIONS RESPONSE
- PROPERTY AND MAILBOX DAMAGE
- COMMERCIAL SNOW PLOWING
- CONTINGENCY RESPONSE PLANS
- INTERNAL &EXTERNAL COMMUNICATION

## ENVIRONMENTAL RESPONSIBILITY ISSUES

#### MATERIALS MANAGEMENT PLANS

#### (USING BEST PRACTICES)

- Materials specifications
- Storage and Yard Facilities
- Material handling & Loading
- Material spreading Patterns
- Material Application Rates
- Washing Equipment
- Disposal of Materials
- Strategies and Tactics in Support of Level of Service Goals



## MATERIALS MANAGEMENT PLANS

• OBJECTIVES

• GUIDING PRINCIPLES

• FRAMEWORK

## MATERIALS MANAGEMENT PLAN OBJECTIVES

- VEHICLE FOR COMMITMENT
- IMPLEMENT BEST MANAGEMENT PRACTICES
- APPLICABLE TO AGENCY STAFF AND HIRED RESOURCES
- http://www.twp.cranberry.pa.us/publicworks/

#### MMP GUIDING PRINCIPLES

- SAFETY
- ENVIRONMENTAL PROTECTION
- CONTINUAL IMPROVEMENT
- FISCALLY DRIVEN
- PROVIDE AN EFFICIENT TRANSPORTATION SYSTEM

# MMP GUIDING PRINCIPLES ctd.

- ACCOUNTABILITY
- MEASURABLE PROGRESS
- AGENCY BASED
- FOCUS ON COMMUNICATIONS
- KNOWLEDGEABLE & SKILLED WORKFORCE

#### FRAMEWORK FOR MMP'S

- POLICY AND OBJECTIVES
- SITUATIONAL ANALYSIS
- WRITTEN POLICY /DOCUMENTATION
- PROPOSED APPROACHES

#### FRAMEWORK FOR SMP'S ctd.

- TRAINING
- MONITORING, RECORD KEEPING, REPORTING AND ANALYSIS
- MANAGEMENT REVIEW

#### MMP PROCESS OF CONTINUAL IMPROVEMENT AND STAKEHOLDER CONSULTATION

• ENVIRONMENTAL POLICIES & GUIDING PRINCIPLES

- MONITORING & ANALYSIS
- MANAGEMENT REVIEW
- BACKGROUND REVIEW & ANALYSIS
- CONTINUE THE CYCLE

- IMPLEMENTATION AND DOCUMENTATION
- EDUCATION & TRAINING
- (SEE TRANSPORTATION ASSOCIATION OF CANADA WEB SITE'S "READING ROOM")

# Snow and Ice Control Materials



## Common Road Treatment Materials

- Salt (Sodium chloride)
- Calcium Chloride
- Magnesium Chloride
- Potassium Chloride
- Brines (by-product of gas production)
- Potassium Acetate
- Calcium Magnesium Acetate
- Urea

Chemicals

- Agricultural By-products
- Other Proprietary Materials
- Abrasives

#### Natural Occurring Salts

## Advantages and Disadvantages of Chemicals and Abrasives

( PAGES 6-9)

Develop lists
 1. Abrasives
 2. Chemicals

Advantages of Chemicals

- Melting action
- Relatively low cost
- No cleanup (as with abrasives)

#### Disadvantages of Chemicals

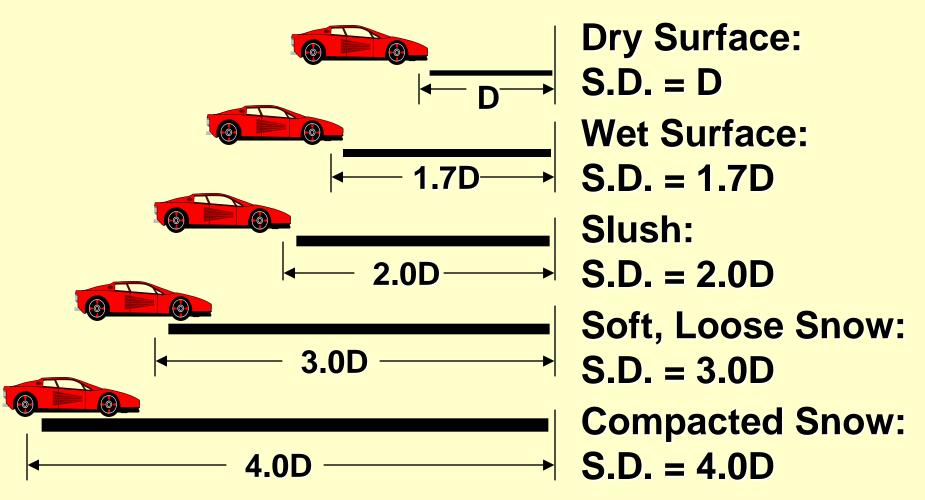
- Effectiveness drops with temperature
- Corrosive
- Environmental concerns
  - Excessive use
  - Improper Storage

#### Abrasives: Advantages

- Relatively inexpensive (initial material cost)
- Easy to apply
- Skid resistance
- Can be mixed with salt and/or prewetted with salt or other chemicals



#### Abrasives: Disadvantages


- no melting action
- easily scattered off road
- windshield breakage
- air pollution
- water pollution
- tracking sidewalks, into homes
- requires clean-up
- Not as safe as bare/wet road



#### The 'true' cost of Abrasives

- One application of abrasives is nearly equal to one application of salt considering equipment and labor costs
- Abrasives have to be applied more frequently than salt resulting in additional application costs
- Add required cleanup costs to the use of abrasives

#### **Stopping Distance**



#### Chemicals

Chemicals applied to:

- prevent bonding of ice and snow to road surface
- prevent ice or frost from forming
- prevent buildup of snowpack
- melt ice that has formed

#### Chemicals: How do they work? (PAGES 5-6)

- Depress the freezing point of water, turning ice or snow into liquid or slush
- Solid salts dissolve to form brine solution

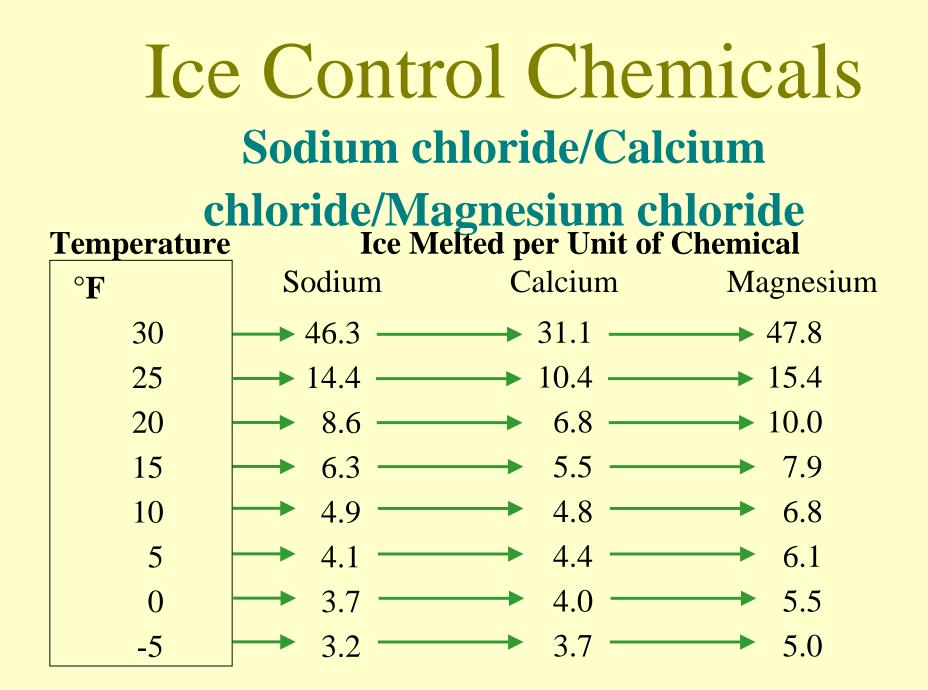
#### **Chemical Terms**

- Concentration
  - % by weight of chemical in solution
- Eutectic Temperature
  - Lowest Temp solution will melt ice
- Endothermic
  - Requires heat when going into solution
- Exothermic
  - Gives off heat when going into solution
- Hygroscopic
  - Draws water from the air

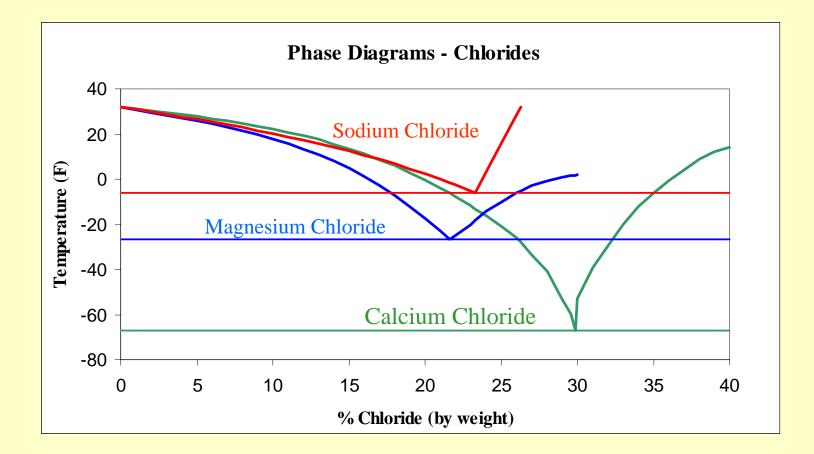
#### Salt: Anti-Caking Agents

• Sodium Ferrocyanide: Yellow Prussiate of Soda (YPS)

– Non-toxic, approved for table salt


- Ferric Ferrocyanide: Prussian Blue
   Non-toxic, used in blueprints, inks
- Both added at 20-100 ppm

#### Salt: Uses


- Pavement Treatment (Liquid)
- Snow/Ice Treatment (Solid or Pre Wet Solid)
- Prewetting Liquid
- Add to Abrasives

stockpile conditioner

provide melting power



# Ice Control Chemicals



## Solid vs Liquid Advantages

- Solids
  - -Less costly
  - Easier to handle
  - Dilute slower (retention)
  - Initial skid
     resistance (salt)

- Liquids
  - Instant action
  - Not displaced by traffic
  - Residue remains effective
  - Versatile
    - Used directly
    - Treat solids

## Solid vs Liquid Disadvantages

- Solid
  - Need moisture
  - Takes time
  - Not good for antiicing (bounce & scatter, displaced by traffic)

- Liquid
  - Mostly water
  - Not useful for thick ice
  - Rain will wash off pavement
  - Can cause slippery conditions

Mixtures of Solid and Liquid Chemicals

- Properties
- Operational characteristics

#### Prewetting Salt

• Prewetted Salt: Salt which has been coated with a liquid solution prior to being spread.

#### Prewetting Salt: Benefits

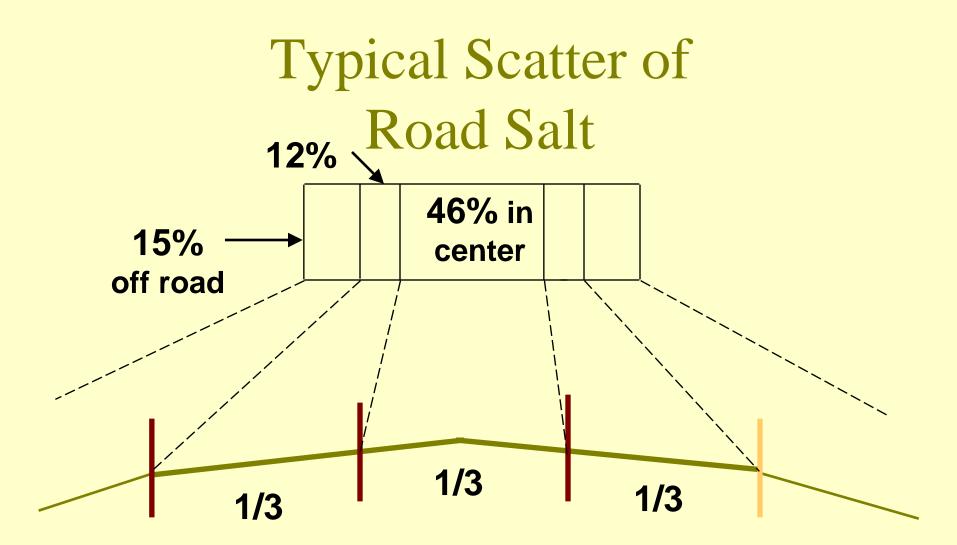
- Less bounce & scatter
- Faster reaction time
- More effective melting action
- Less salt needed resulting in:

- reduced costs

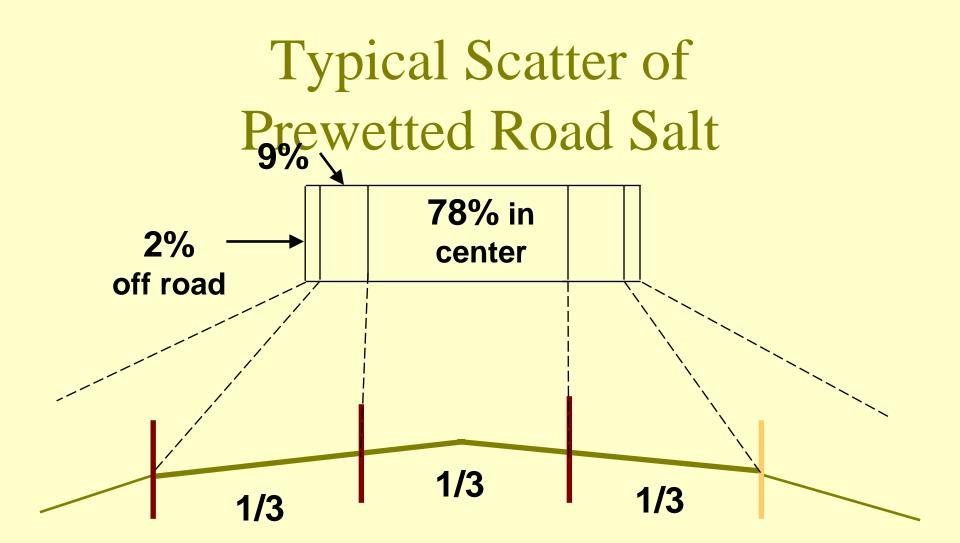
- reduced environmental concerns

### PREWETTING TECHNIQUES

- Stockpile or Pre-Delivery (Salt or Sand)
- In Spreader Hopper or Dump Body
- On Loader Bucket
- On-Board Systems
- On-Road Procedures


# LIQUID CHEMICALS that are added to SOLID CHEMICALS

- MgCI magnesium chloride & Organic Chem.
- CaCl<sub>2</sub> calcium chloride & Organic Chem.
- CaCl<sub>2</sub> calcium chloride & CMA
- MgCI magnesium chloride & CMA
- NaCl sodium chloride & "Organic Chem.
- NaCl sodium chloride


#### ALL ARE MOSTLY WATER

#### Prewetting Salt

Wetness provided by solutions does cause salt to stick to the road surface or embed more quickly into an icy surface, thereby keeping the chemical mixture within the desired treatment area.



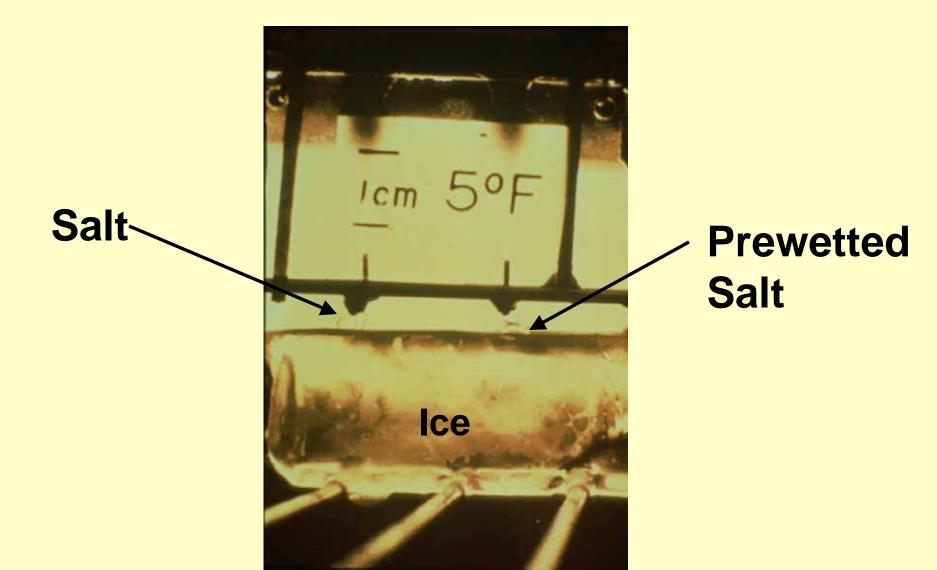
100% salt spread in center 1/3 of road

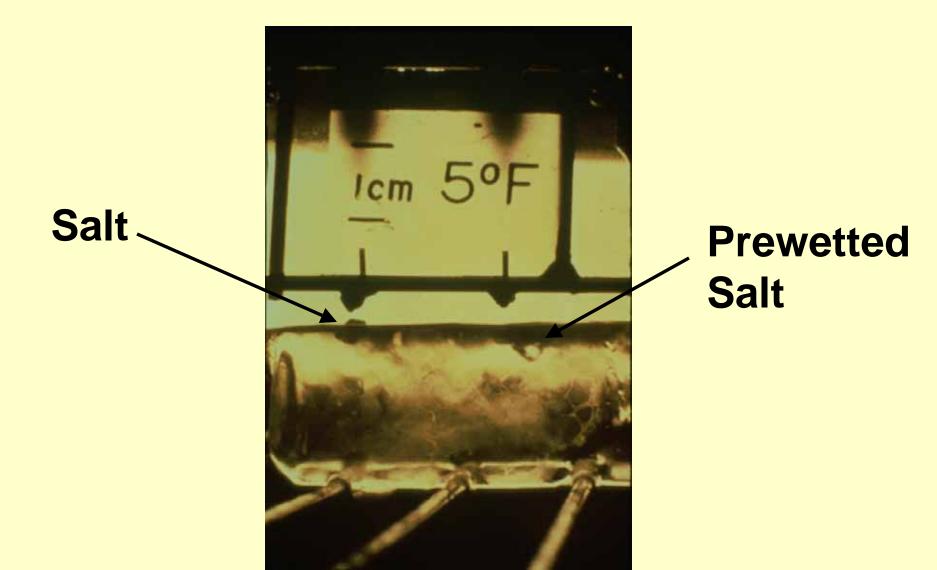


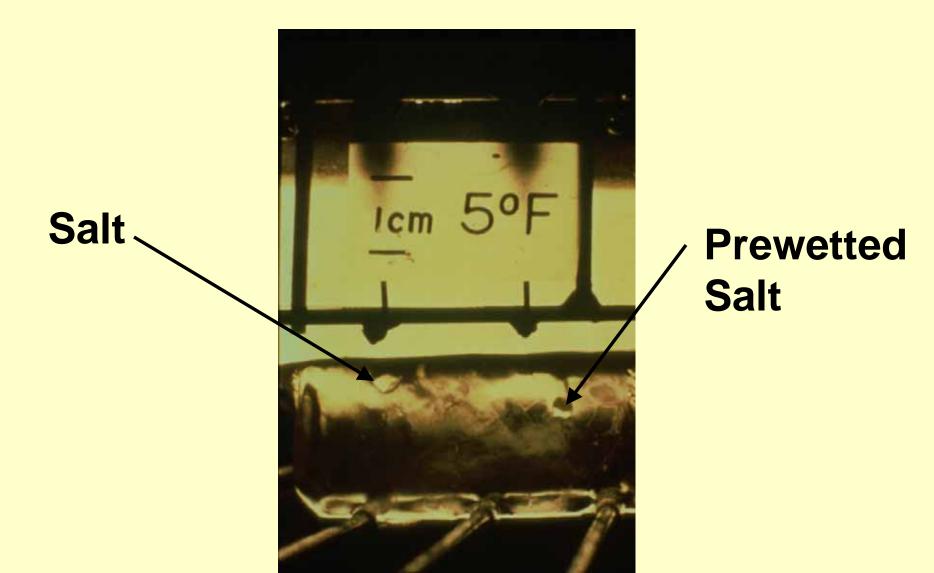
100% prewetted salt spread in center 1/3 of road

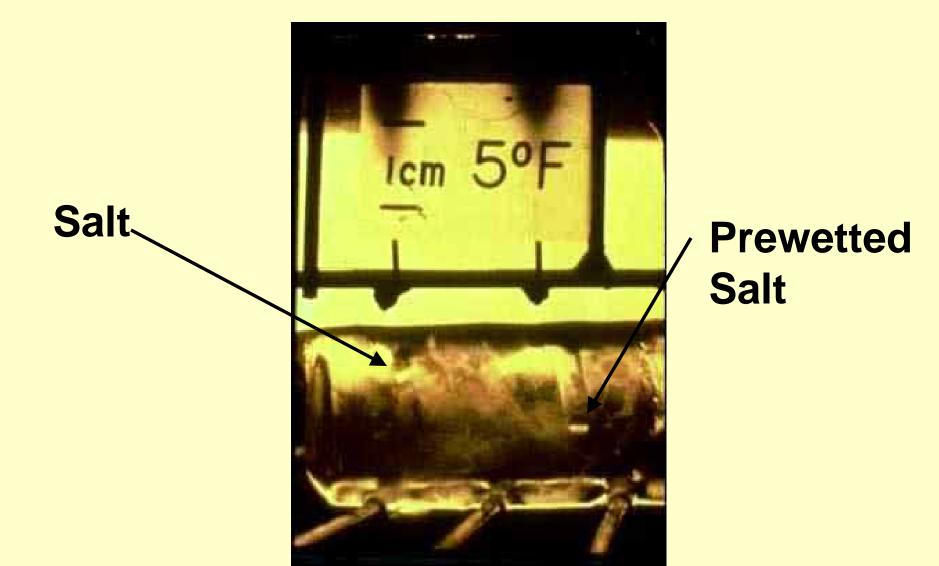
#### Wetted Salt Benefits

"Wetted salt has.... less tendency to bounce and scatter."


"Wetted salt begins immediately.... cleaning is achieved with less salt, less effort, and reduced operating costs." continued....


#### Wetted Salt Benefits


"....a 30% reduction of salt use taken as a reasonable minimum...."


Public Technology, Inc.

Take this with a grain of salt - Dewey

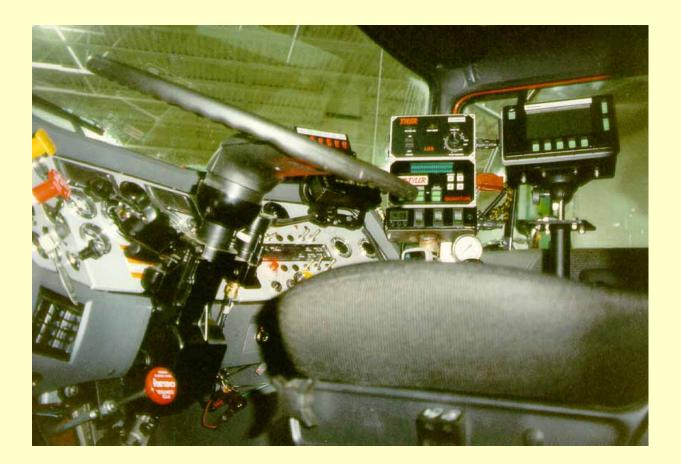




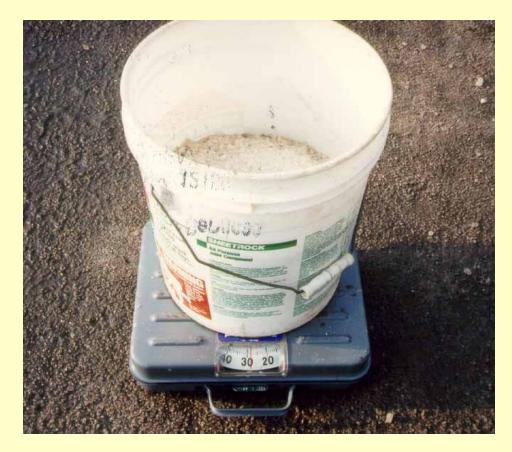




#### ORGANIC (CARBOHYDTATE ENHANCED)


LIQUID ICE CONTROL CHEMICALS Organic Chemicals are a SUGAR by-product of a Process

Sugar Making Beer and whiskey making Corn Fermentation Other Crop Fermentation or Processing


## Advantages of Organic Chemicals

- Usual advantages of Pre Wetting
- Residual Effect between Storms
- Short Term Corrosion Protection (hwy.)
- Corrosion Protection on Equipment (cars ?)
- Environmental Marketing

## Application Rate Control (PAGES 3,AND 19-22)



# Calibration



# Calibration

#### **CALIBRATION CHART**

| Agency:    |               |
|------------|---------------|
| Location:  |               |
| Truck No.: | Spreader No.: |
| Date:      | By:           |

|                            |                       |                                            |                                | POUNDS DISCHARGED PER MILE |                  |                  |                  |                  |                  |                  |                  |                  |
|----------------------------|-----------------------|--------------------------------------------|--------------------------------|----------------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| inden og frederik for fore | Α                     | В                                          | С                              | MINUTES TO TRAVEL ONE MILE |                  |                  |                  |                  |                  |                  |                  |                  |
| Control<br>Setting         | Shaft RPM<br>(Loaded) | Discharge<br>Per<br>Revolution<br>(Pounds) | Discharge<br>Rate<br>(Lbs/Min) | 5 mph<br>x 12.00           | 10 mph<br>x 6.00 | 15 mph<br>x 4.00 | 20 mph<br>x 3.00 | 25 mph<br>x 2.40 | 30 mph<br>x 2.00 | 35 mph<br>x 1.71 | 40 mph<br>x 1.50 | 45 mph<br>x 1.33 |
| 1                          |                       |                                            |                                |                            |                  |                  |                  |                  |                  |                  |                  |                  |
| 2                          |                       |                                            |                                |                            |                  |                  |                  |                  |                  |                  |                  |                  |
| 3                          |                       |                                            |                                |                            |                  |                  |                  |                  |                  |                  |                  |                  |
| 4                          |                       |                                            |                                |                            |                  |                  |                  |                  |                  |                  |                  |                  |
| 5                          |                       |                                            |                                |                            |                  |                  |                  |                  |                  |                  |                  |                  |
| 6                          |                       |                                            |                                |                            |                  |                  |                  |                  |                  |                  |                  |                  |
| 7                          |                       |                                            |                                |                            |                  |                  |                  |                  |                  |                  |                  |                  |
| 8                          |                       |                                            |                                |                            |                  |                  |                  |                  |                  |                  |                  |                  |
| 9                          |                       |                                            |                                |                            |                  |                  |                  |                  |                  |                  |                  |                  |
| 10                         |                       |                                            |                                |                            |                  |                  |                  |                  |                  |                  |                  |                  |

# Calibration

#### Table 8- Discharge and application rates

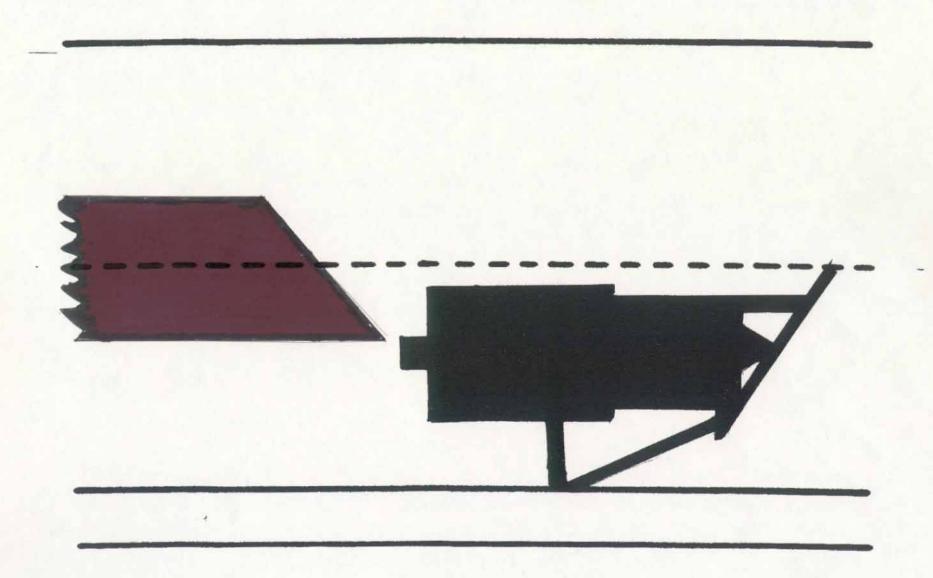
| Discharge Rate<br>(pounds/mile) | Application Rate, pounds per lane-mile |     |     |  |  |  |
|---------------------------------|----------------------------------------|-----|-----|--|--|--|
|                                 | Number of lanes being treated          |     |     |  |  |  |
|                                 | 1                                      | 2   | 3   |  |  |  |
| 100                             | 100                                    | 50  | 33  |  |  |  |
| 200                             | 200                                    | 100 | 67  |  |  |  |
| 300                             | 300                                    | 150 | 100 |  |  |  |
| 400                             | 400                                    | 200 | 133 |  |  |  |
| 500                             | 500                                    | 250 | 167 |  |  |  |
| 600                             | 600                                    | 300 | 200 |  |  |  |
| 700                             | 700                                    | 350 | 233 |  |  |  |
| 800                             | 800                                    | 400 | 267 |  |  |  |

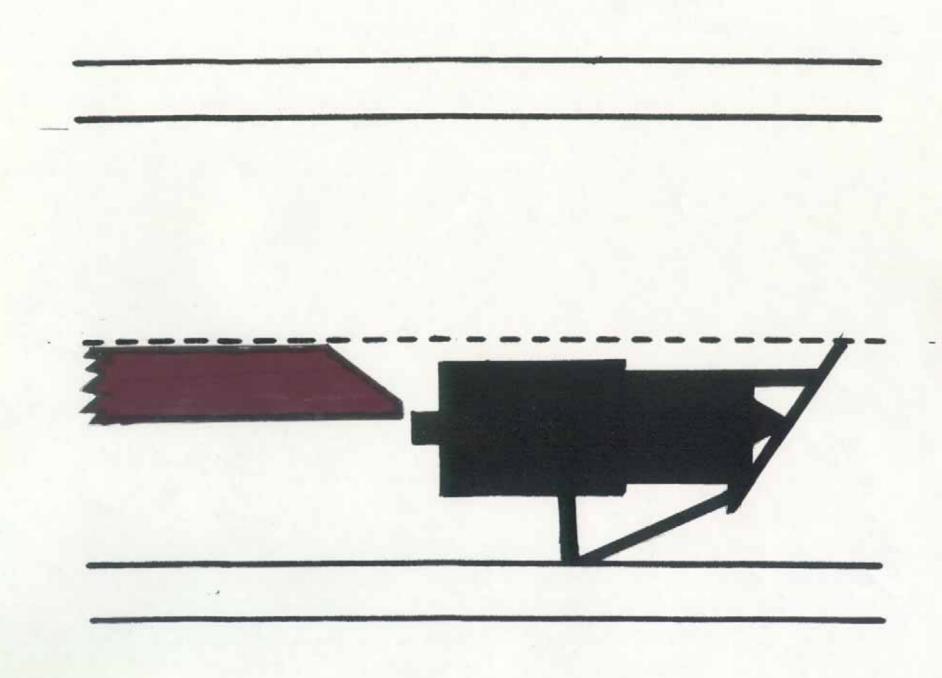
## GROUND SPEED CONTROL WHY?

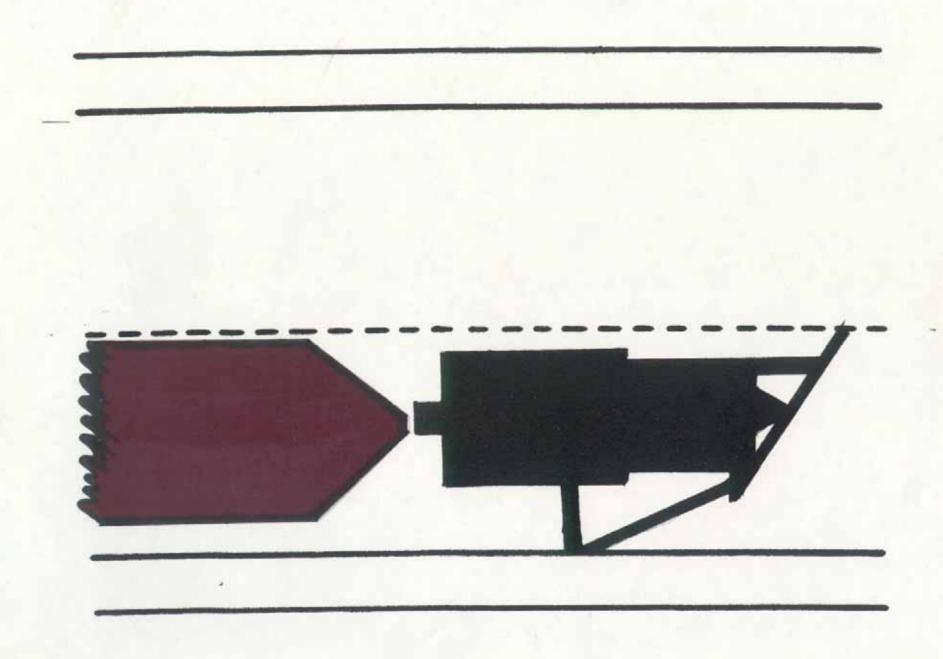
• Higher Degree of Application Rate Control

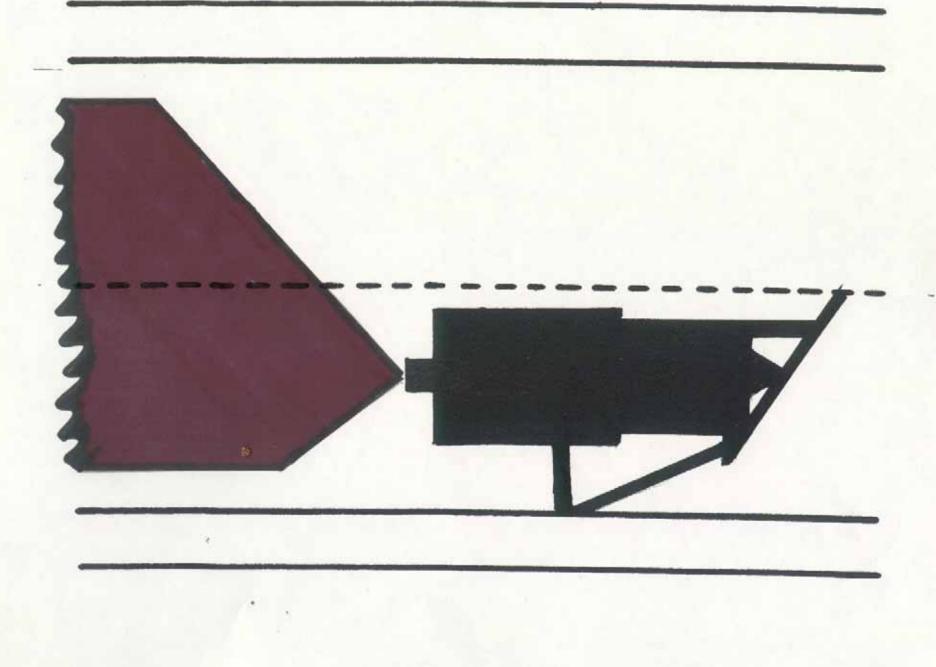
• Cost Payback in LESS THAN ONE YEAR

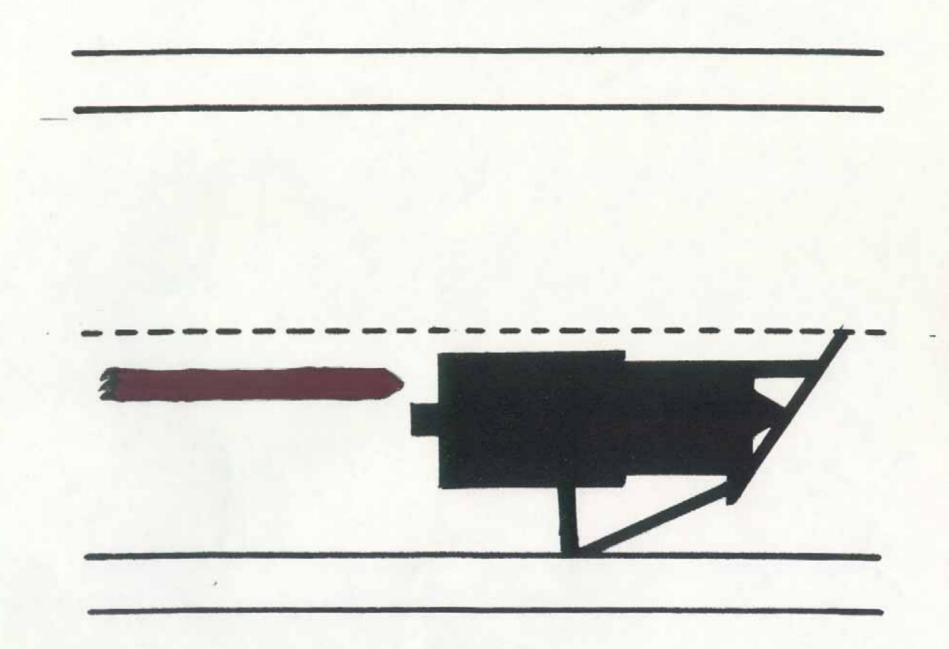
• Material Savings 20 to 40 PERCENT





Roadway Elements


- Bridges
- Strong crosswinds
- Curves
- Change in jurisdiction


#### Worst Case Scenarios









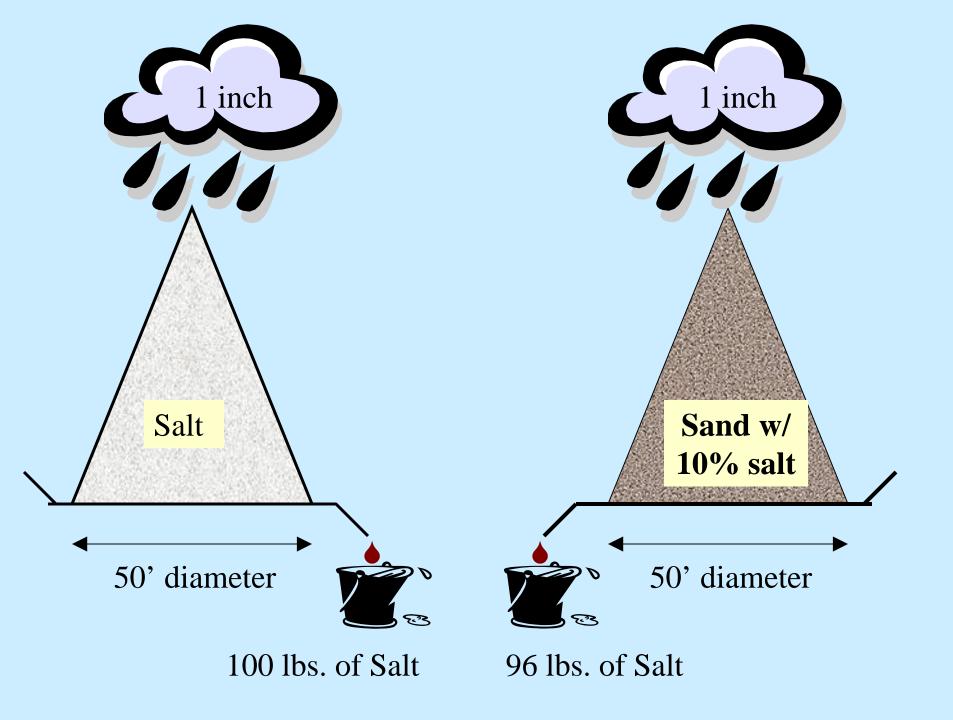





# SALT AND THE ENVIRONMENT

- GROUND AND SURFACE WATER
- VEGETATION
- WILDLIFE
- HUMAN HEALTH

#### **STORING AND HANDLING**


SALT

## Major Points of Good Salt Storage

- Sufficient capacity
- Inside storage, if possible
- Outside piles properly shaped & covered
- Impermeable pads
- Proper drainage with containment as required
- Good housekeeping







# Salt Storage Potential Problems

- Moisture produces surface crust, which form lumps clogging equipment
- Runoff: Surface runoff and infiltration through soil leachate
- Spillage during stockpiling or spreader loading

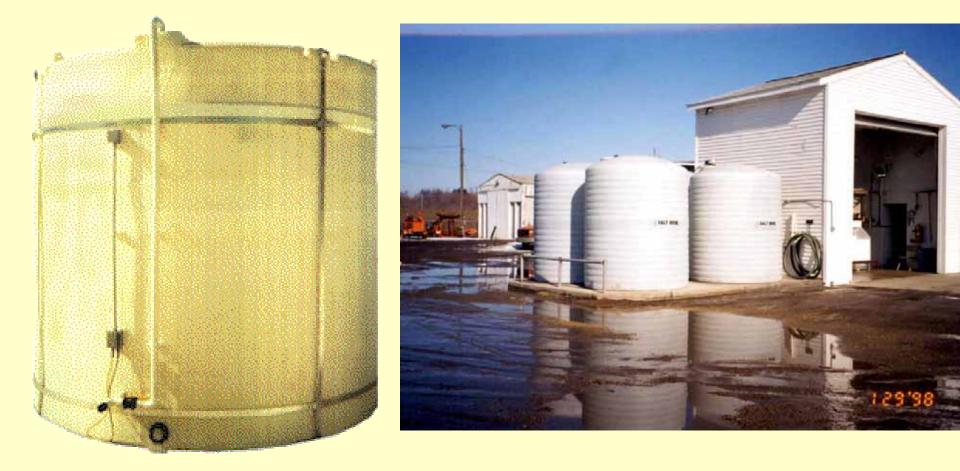


### Improper storage...



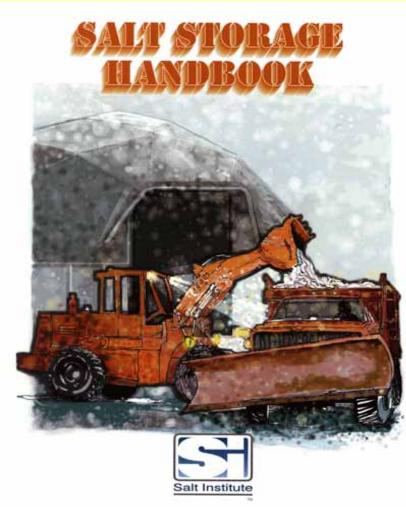


....can only lead to problems!


## Solid Material Storage

#### **'Open' piles = Problems**






## Liquid Storage Tanks



#### Salt Institute's Salt Storage Handbook

- A Practical Guide for Storing & Handling Deicing Salt
  - Valuable Info
  - Charts
  - Check List



#### **SNOW, ICE AND ABRASIVES**

# DISPOSAL

## **SNOW AND ICE**

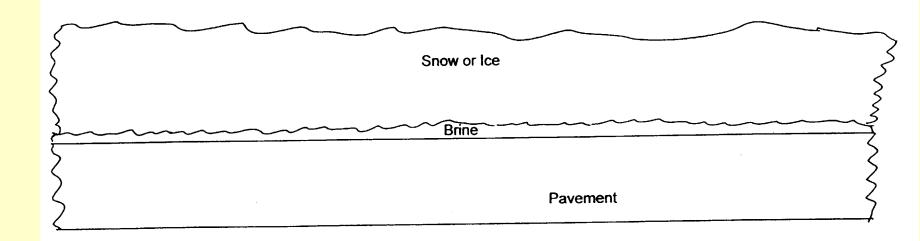
- Local Regulations
- Other Unwanted Contaminants
- Silt Issues
- Trash Issues
- Groundwater issues
- Surface Water Quality Issues

#### ABRASIVES

- Surface Water Silt Loading Issues
- Other contaminants
- Reprocessing
- Air Quality Issues

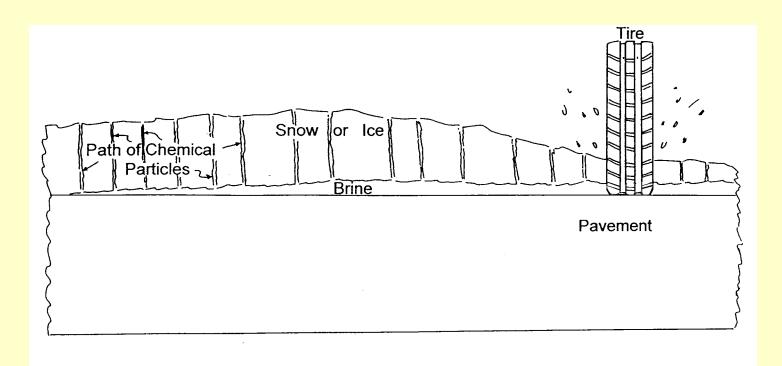
#### OPERATIONAL STRATEGIES AND TACTICS (PAGES 9-12 AND 13-18)

## Anti-icing


• Anti-icing is a proactive operation: Spreading material before the storm start; prevents snow and ice from bonding to the road and prevents frost

versus

• Deicing is a reactive operation: Spreading material after storm starts; allows bonding of snow and ice to road causing use of more salt and more time to break the bond and achieve melting


# Anti-icing Strategy

#### Figure 2 Anti–icing



# Deicing Strategy

#### Figure 3 Deicing



**Temporary Friction** Improvement 18 cars and the effectiveness of abrasives is gone Formation of Ice on Highway Bridges and other Cold Spots

- Pavement and Bridge Surface Temperature
- Non Precipitation Events
- Precipitation Events
  - Snow
  - Freezing Rain
    - Sleet

# Chemical and Abrasives Policies

"chemical priority policy" vs.

" "abrasive priority policy" Having the same level of service goals

# Chemical and Abrasives Policies

# How much does it cost to treat a lane mile with:

- Abrasives
- Chemicals (salt)

# Salt vs. Sand

#### Cost to treat one lane-mile with salt vs. abrasives

| Salt    | Cost Factors                  | Abrasives |
|---------|-------------------------------|-----------|
| \$32.00 | A Purchase Cost/ton, \$       | \$6.51    |
|         | B Cost of added salt/ton (7%) | \$2.24    |
|         | C Mixing cost, \$             | \$.60     |
| \$32.00 | D Total Cost (per ton), \$    | \$9.35    |
| 225     | E Pounds per lane mile        | 750       |
| \$3.60  | Cost / lane mile, \$          | \$3.50    |

# Comparison of Salt vs. Sand

✓ New York State DOT (Watertown, 1998-99)

33% Salt in Sand Mix)

|                               | <u>Salt</u> | <u>Sand</u> |
|-------------------------------|-------------|-------------|
| Sand Used, Tons / Iane mile   | 5.2         | 32.8        |
| Salt Used, Tons / Iane mile   | 23.7        | 22.2        |
| Cost / lane mile @ \$8 & \$30 | \$754       | \$929       |
| Average Condition Index       | 3.0         | 3.3         |
|                               |             |             |
| Total Materials Tons / Im     | 28.9        | 55.0        |
|                               |             |             |
| Average Traffic, VPH          | > 125       | > 125       |

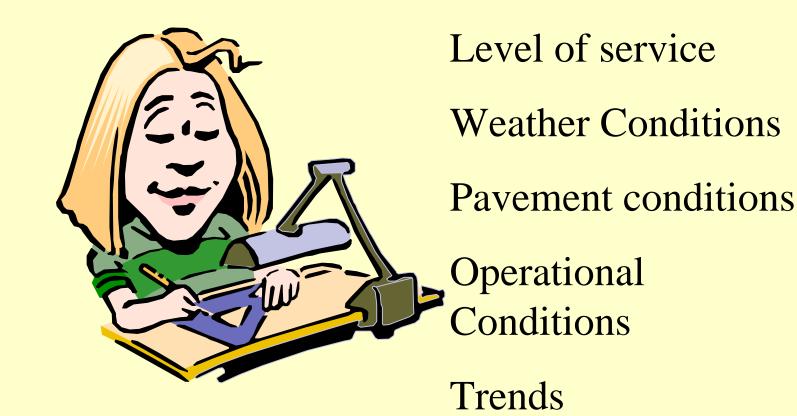
# Comparison of Salt vs. Sand



(7% Salt in Sand Mix)

| <i>N</i>                    | /           |       |
|-----------------------------|-------------|-------|
|                             | <u>Salt</u> | Sand  |
| Sand Used, Tons / lane mile | 3.6         | 62.4  |
| Salt Used, Tons / Iane mile | 6.4         | 4.9   |
| Cost/Im @ \$9.60 & \$35.00  | \$258       | \$771 |
| Average Condition Index     | 2.8         | 3     |
| Total Materials Tons / Im   | 10          | 67.3  |
| Average Traffic, VPH        | 63          | 63    |

# Comparison of Salt vs. Sand


#### ✓ New York State -- Warren County

| (7% Salt in Sand Mix)       |             |             |  |
|-----------------------------|-------------|-------------|--|
|                             | <u>Salt</u> | <u>Sand</u> |  |
| Sand Used, Tons / Iane mile | 0.3         | 2.3         |  |
| Salt Used, Tons / Iane mile | 0.9         | 2.3         |  |
| Cost/Im @ \$8 & \$30        | \$28        | \$86        |  |
| Average Condition Index     | 4.3         | 4.3         |  |
| Total Materials tons / Im   | 1.2         | 4.6         |  |
| Average Traffic, VPH        | 25          | 25          |  |

# Using Chemical/Abrasives Mixtures

- Typical chemical/abrasives mixtures
- Conditions for use
  - ✓ Level of service dependent
    - Overall
    - Within-storm
  - ✓ Unpaved roads
  - ✓ Low pavement temperature conditions
  - ✓ Steep grades

# Designing Snow and Ice Control Material Treatments



# Level of Service

DESIRED OR OBSERVED PAVEMENT CONDITIONS AT VARIOUS POINTS IN TIME DURING AND AFTER WINTER WEATHER EVENTS

# Sources and Types of Road and Weather Information Available



DEVELOP LIST:

ROAD

WEATHER

# Ice Control Treatment

# Dilution potential and pavement temperature are key

# **Dilution Potential**

- Weather conditions
- Pavement conditions
- Cycle time
- Traffic
- Trends

# Precipitation Types

- Light rain
- Moderate rain
- Heavy rain
- Freezing rain
- Sleet

- Light Snow
- Moderate snow
- Heavy Snow
- Blowing Snow
- None

# Pavement Conditions

- Dry
- Damp
- Wet
- Slush

- Loose snow
- Packed snow
- Frost
- Thin ice
- Thick ice

Pavement Condition at Time of Treatment

- Bond to pavement
- Residual snow or ice on pavement
- Pavement temperature

**Operational Conditions** 

• Traffic Volume (+/- 125 VPH)

• Traffic Speed (+/- 35 MPH)

• Operational Cycle Time (1.5 and 3.0 HRS.)

#### **Precipitation Dilution Potential**

|                              |                                                   | Precipitation rate |              |             |         |
|------------------------------|---------------------------------------------------|--------------------|--------------|-------------|---------|
|                              | Precipitation type                                | Light              | Moderate     | Heavy       | Unknown |
| 1.                           | Snow (powder)                                     | Low                | Low          | Medium      | Low     |
| 2.                           | Snow (ordinary)                                   | Low                | Medium       | High        | Medium  |
| 3.                           | Snow (wet/heavy)                                  | Medium             | High         | High        | High    |
| 4.                           | Snow (unknown)                                    | -                  | Medium       | _           | _       |
| 5.                           | Rain                                              | Low                | Medium       | High        | Medium  |
| 6.                           | Freezing rain                                     | Low                | Medium       | High        | Medium  |
| 7.                           | Sleet                                             | Low                | Medium       | High        | Medium  |
| 8.                           | Blowing snow                                      | _                  | Medium       | -           | _       |
| 9.                           | Snow with blowing snow                            |                    | (Same as typ | be of snow) |         |
| 10.                          | Freezing rain with sleet                          | Low                | Medium       | High        | Medium  |
| 11.                          | None<br>If wheel path area condition is:          |                    |              |             |         |
|                              | – Dry or damp Not applicable                      |                    |              |             |         |
|                              | – Wet                                             | Low                |              |             |         |
|                              | <ul> <li>Frost or black ice (thin ice)</li> </ul> | Low                |              |             |         |
| – Slush or loose snow Medium |                                                   |                    |              |             |         |
|                              | <ul> <li>Packed snow or thick ice</li> </ul>      | thick ice High     |              |             |         |

## Adjustments to Precipitation Dilution Potential

| Adjustments to Precipitation Dilution Potential            |                                                                     |
|------------------------------------------------------------|---------------------------------------------------------------------|
| a) Wheel path area condition when precipitation is present | Increase precipitation dilution potential above by number of levels |
| Bare                                                       | 0                                                                   |
| Frost or thin ice                                          | 0                                                                   |
| Slush, loose snow, packed snow, or thick ice               | 1                                                                   |
| b) Cycle time                                              |                                                                     |
| 0 - 1.5 hrs                                                | 0                                                                   |
| 1.6 - 3.0 hrs                                              | 1                                                                   |
| Over 3.0 hrs                                               | 2                                                                   |
| c) Traffic volume at traffic speeds > 35 mph               |                                                                     |
| Less than 125 vph                                          | 0                                                                   |
| More than 125 vph                                          | 1                                                                   |

#### Application Rates for Solid, Prewetted Solid, and Liquid Sodium Chloride

| Pavement    |                    |                   | Application rate |            |
|-------------|--------------------|-------------------|------------------|------------|
| Temperature | Adjusted           |                   | Solid (1)        | Liquid (2) |
| (°F)        | dilution potential | Ice pavement bond | lb/L-M           | gal/L-M    |
|             |                    | No                | 90 (3)           | 40 (3)     |
|             | Low                | Yes               | 200              | NR (4)     |
| Over 32     |                    | No                | 100 (3)          | 44 (3)     |
| Over 32     | Medium             | Yes               | 225              | NR (4)     |
|             |                    | No                | 110 (3)          | 48 (3)     |
|             | High               | Yes               | 250              | NR (4)     |
|             |                    | No                | 130              | 57         |
|             | Low                | Yes               | 275              | NR (4)     |
| 30 to 32    |                    | No                | 150              | 66         |
| 50 10 52    | Medium             | Yes               | 300              | NR (4)     |
|             |                    | No                | 160              | 70         |
|             | High               | Yes               | 325              | NR (4)     |
|             |                    | No                | 170              | 74         |
|             | Low                | Yes               | 350              | NR (4)     |
| 25 to 30    |                    | No                | 180              | 79         |
| 25 10 50    | Medium             | Yes               | 375              | NR (4)     |
|             |                    | No                | 190              | 83         |
|             | High               | Yes               | 400              | NR (4)     |
|             |                    | No                | 200              | 87         |
| 20 to 25    | Low                | Yes               | 425              | NR (4)     |
|             |                    | No                | 210              | 92         |
|             | Medium             | Yes               | 450              | NR (4)     |
|             |                    | No                | 220              | 96         |
|             | High               | Yes               | 475              | NR         |

#### Application Rates for Solid, Prewetted Solid, and Liquid Sodium Chloride (Cont.)

|                                                                                                                                                      |        | No  | 230 | NR |
|------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----|-----|----|
|                                                                                                                                                      | Low    | Yes | 500 | NR |
|                                                                                                                                                      |        | No  | 240 | NR |
| 15 to 20                                                                                                                                             | Medium | Yes | 525 | NR |
|                                                                                                                                                      |        | No  | 250 | NR |
|                                                                                                                                                      | High   | Yes | 550 | NR |
|                                                                                                                                                      |        | No  | 260 | NR |
|                                                                                                                                                      | Low    | Yes | 575 | NR |
| 10 ( . 15                                                                                                                                            |        | No  | 270 | NR |
| 10 to 15                                                                                                                                             | Medium | Yes | 600 | NR |
|                                                                                                                                                      |        | No  | 280 | NR |
|                                                                                                                                                      | High   | Yes | 625 | NR |
| Below 10°FA. If unbonded, try mechanical removal without chemical.B. If bonded, apply chemical at 700 lb/L-M. Plow when slushy. Repeat as necessary. |        |     |     |    |
| NR = Not recommended. Apply abrasives as necessary.                                                                                                  |        |     |     |    |

Specific Notes:

1. Values for "solid" also apply to prewet solid and include the equivalent dry chemical weight in prewetting solutions.

2. Liquid values are shown for the 23-percent concentration solution.

3. In unbonded, try mechanical removal without applying chemicals. If pretreating, use this application rate.

4. If very thin ice, liquids may be applied at the unbonded rates.

General Notes:

5. These application rates are starting points. Local experience should refine these recommendations.

6. Prewetting chemicals should allow application rates to be reduced by up to about 20% depending on such primary

factors as spread pattern and spreading speed.

7. Application rates for chemicals other than sodium chloride will need to be adjusted using the guidance in Table 5. 8. Before applying any ice control chemical, the surface should be cleared of as much snow and ice as possible.

### **STEP BY STEP**

- Determine Precipitation Dilution Potential
- Adjust for Operational and Pavement Conditions (Adjusted Dilution Potential)
- Determine Pavement Temperature
- Determine Ice/Pavement Bond
- Select application rate

IF YOU USE THE "PROPER" AMOUNT OF ICE CONTROL CHEMICAL EACH TIME, RATHER THAN A PRESCRIBED AMOUNT, YOU WILL USE LESS CHEMICAL OVERALL AND PROVIDE A CONSISTANTLY HIGH LEVEL OF SERVICE

## QUESTIONS

# Thank you for your participation!

